为什么AI Agent总翻车?一位工程师的冷静诊断
在AI Agent被热烈追捧的当下,Sayash Kapoor给出了一次“泼冷水式”的演讲:Agent并没有我们想象中那么可靠。通过法律、科研和产品落地的真实失败案例,他指出问题不在模型能力,而在评估方法与可靠性工程。
在AI Agent被热烈追捧的当下,Sayash Kapoor给出了一次“泼冷水式”的演讲:Agent并没有我们想象中那么可靠。通过法律、科研和产品落地的真实失败案例,他指出问题不在模型能力,而在评估方法与可靠性工程。
LinkedIn并非一开始就要打造宏大的GenAI平台,而是在真实产品压力下,一步步演化出支撑AI Agent的基础设施。本文还原Xiaofeng Wang的分享,讲清楚他们为何自建平台、如何从简单Prompt走向多智能体系统,以及这些选择背后的工程与组织洞见。
这场分享不是发布新模型,而是Anthropic首次系统性讲清:大模型如何真正进入企业核心业务。从Claude 3.5 Sonnet的工程优势,到可解释性如何影响安全与商业价值,再到客户实践中踩过的坑,这是一份来自一线的企业AI落地方法论。
一家只有两名核心工程师参与的团队,如何在金融这种高风险场景中,把AI Agent真正推到生产环境,并支撑每天千万级请求?这场分享讲清了从GPT-4试水、成本失控,到微调小模型实现质量、成本、延迟三赢的完整路径。
Sierra工程负责人Zack Reneau‑Wedeen用一连串真实故事,讲述了他们如何构建、上线并持续改进AI Agent。与其谈模型参数,他更强调“开发生命周期”:从真实场景出发,让Agent在不断使用中进化。
Brightwave创始人Mike Conover从金融尽调一线的“人肉地狱”出发,讲述为什么金融AI Agent必须以“可验证”为核心设计原则,以及为何聊天式交互远不足以承载高风险金融决策。
很多企业都在“上AI”,却答不出ROI。Booking.com与Sourcegraph分享了一条少见的路径:从真实的工程痛点出发,用AI Agent逐步吞掉软件开发中的高比例“toil”,并用严格的数据证明,开发者效率确实提升了30%以上。
YC最新视频聚焦AI代理平台Manis:它并非更强的单一模型,而是一套精密的多智能体协作系统。文章深入拆解其技术架构、真实能力、成本优势,以及“应用层rapper”模式的机会与隐忧,帮助读者理解AI代理下一阶段真正的竞争焦点。
PyTorch 联合创始人 Soumith Chintala 从亲身使用 AI 的挫折与收获出发,提出一个与主流云端 Agent 不同的判断:真正能托付个人生活的 AI,必须运行在本地、完全私有。本文还原他的关键故事、技术现实与尚未解决的挑战。
Anthropic 的 Barry Zhang 用一次极其克制的演讲,拆解了“有效 Agent”真正难的地方:不是能力不够,而是人们用错了地方、把系统设计得过于复杂。本文还原他关于 Agent 演进路径、使用边界与设计心法的核心洞见。